

JRC TECHNICAL REPORTS

Guidance for the identification of polymers in multilayer films used in food contact materials

User guide of selected practices to determine the nature of layers

Anja Mieth, Eddo Hoekstra, Catherine Simoneau

2016

This publication is a Technical report by the Joint Research Centre, the European Commission's in-house science service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication.

Contact information

Catherine Simoneau Address: Joint Research Centre, TP 260 E-mail: <u>JRC-FCM@ec.europa.eu</u>

JRC Science Hub https://ec.europa.eu/jrc

JRC100835

EUR 27816 EN

ISBN 978-92-79-57561-7 (PDF)

ISSN 1831-9424 (online)

doi:10.2788/10593 (online)

© European Union, 2016

Reproduction is authorised provided the source is acknowledged.

All images © European Union 2016

How to cite:

Anja Mieth, Eddo Hoekstra, Catherine Simoneau - Guidance for the identification of polymers in multilayer films used in food contact materials: User guide of selected practices to determine the nature of layers; EUR 27816 EN; doi:10.2788/10593

Table of contents

Abstract4
1. Introduction4
2. Terms and definitions
3 Analysing the composition of a multilayer plastic film: Separation and identification of layers . 5
3.1 Scope
3.2 Materials and reagents6
3.2.1 Organic solvents (all of reagent grade)6
3.2.2 Organic and inorganic acids6
3.2.3 Reagents and materials for analytical tests
3.2.4 Other materials
3.3 Equipment
3.3.1 Microtome and polarization microscope6
3.3.2 ATR-FTIR system6
3.3.3 DSC system
3.3.4 Glassware and other laboratory equipment6
3.4 General composition of multilayer packaging films7
3.4.1 Plastic polymers7
3.4.2 Aluminium foil
3.4.3 Bonding of the different layers8
3.4.4 Coatings/lacquers10
3.4.5 Non-food contact printings11
3.4.6 Direct food contact printings12
3.5 Analysis of the composition of a Multilayer film12
3.5.1 Microtome sectioning and microscopy12
3.5.2 Identification of food contact layer and outside layer by ATR-FTIR
3.5.3 Separation of layers13
3.5.3.1 Selection of solvents
3.5.3.2 Immersing the sample in solvent
3.5.4 Identification of the layers peeled off and laid open (ATR-FTIR spectroscopy) 16
3.5.5 Specification of layers with DSC 19
3.5.6 Special analytical tests for the identification of printing inks and coatings
3.6 Examples
References
Annex 1: Example of protocol for operating a rotary microtome
Annex 2: Example of protocol for microscopy of microtome cross-sections
Annex 3: Example of protocol for handling/maintenance of an ATR-FTIR spectrometer

Abstract

This guidance describes how to characterize the composition of a multilayer plastic film for food packaging, with respect to the consecutive order of the layers and their identity. It provides background information on the general composition of multilayer plastic packaging and it illustrates in detail the separation of layers for some examples. It also provides in annexes additional information related to the use of a microtome and of optical microscopy using one common instrument for illustrative purposes.

1. Introduction

Being able to identify the composition of a packaging film is essential to confirm the correctness of specifications given in the Declaration of Compliance that accompanies all food contact materials made of plastic (see EU 10/2011 Art. 15 and Annex IV (3) [1]). Furthermore, each type of polymer, printing, coating and adhesive contains typical additives and monomers or oligomers with a potential for migration, while at the same time certain layers can act as functional barriers for particular migrants. Therefore, knowing the composition of a multilayer film enables laboratories to predict which migrants can be expected from the packaging film and thus also helps to check the plausibility of obtained migration results.

A PT was organised in 2013 which for the first time aimed at estimating performance of qualitative analysis. The aim of the exercise was to test the laboratories' ability to identify unknown plastics materials via quick screening tools. The results demonstrated a spread and some level of difficulty for laboratories to identifying particular multilayer materials. A follow up was organised in 2014 specifically for multilayers, in order to ensure improved laboratory performance.

Considering there are no reference methods and the novelty to tackle assessments of qualitative nature, EU-RL FCM produced a number of methods descriptions to assist NRLs in doing this type of analysis. The descriptions have been integrated in the present guidelines.

2. Terms and definitions

410.	
AIUX	aluminium oxide
AIR	
BOPP	blaxially-oriented polypropylene
CN	cellulose nitrate (nitrocellulose)
DMSO	dimethyl sulfoxide
DSC	differential scanning calorimetry
EAA	ethylene acrylic acid copolymer
EB	electron beam
EMA	ethylene methyl acrylate copolymer
EVA	ethylene vinyl acetate copolymer
EVOH	ethylene vinyl alcohol copolymer
FTIR	Fourier Transform Infrared
HDPE	high density polyethylene
ionomers	EAA or EMA neutralised with cations (e.g. Na+, Zn2+, Li+)
LDPE	low density polyethylene
LLDPE	linear low density polyethylene
PA	polyamide
PA6	PA homopolymer made from caprolactam
PA6/66 PA	copolymer made from caprolactam, hexamethylenediamine and adipinic acid
PA6/MXD6	PA copolymer made from caprolactam, m-xylylenediamine and adipinic acid
PA66	PA homopolymer made from hexamethylenediamine and adipinic acid
PAMXD6	PA homopolymer made from caprolactam, m-xylylenediamine and adipinic acid
PC	polycarbonate
PE	polvethylene
PEN	polyethylene naphthalate
PET	polvethylene terephthalate
PET-G	glycol-modified polyethylene terephthalate
PMMA	polymethyl methacrylate
PP	polypropylene
PS	polystyrene
PTFE	polytetrafluorethylene
PUR	polyurethane
PVC	polyvinylchloride
PVDC	polyvinylidene chloride
SiOx	silicon oxide
UV	ultraviolet.

3 Analysing the composition of a multilayer plastic film: Separation and identification of layers

3.1 Scope

This procedure describes how to characterize the composition of a multilayer plastic film for food packaging, meaning the consecutive order of the layers and their identity. It provides background information on the general composition of multilayer plastic packaging and it illustrates in detail the separation of layers for some examples.

3.2 Materials and reagents

3.2.1 Organic solvents (all of reagent grade)

Acetone, butyl acetate, carbon disulfide, chloroform, cyclohexanone, cycloheptanone, din-butyl sulfoxide, N,N-dimethylacetamide, N,N-dimethylformamide, dimethyl sulfoxide, ethyl acetate, methylene chloride, methyl ethyl ketone, tetrahydrofuran, toluene, pxylene

3.2.2 Organic and inorganic acids

- Formic acid, reagent grade, \geq 95%
- Hydrochloric acid, reagent grade, 37%
- Sulfuric acid, reagent grade, 95-98 %

3.2.3 Reagents and materials for analytical tests

- Sodium hydroxide, reagent grade, ≥98%
- Diphenylamine
- Copper wire

3.2.4 Other materials

- Cotton sticks
- Paper towels
- Glass beads

3.3 Equipment

3.3.1 Microtome and polarization microscope

- Boeckeler S300 rotary microtome
- Zeiss Axioskop 2 MAT, equipped with AxioCam MRc

3.3.2 ATR-FTIR system

- Perkin Elmer Spectrum One FT-IR Spectrometer
- Perkin Elmer Universal ATR Sampling Accessory
- Software: Spectrum Version 6.3.1, Perkin Elmer

3.3.3 DSC system

- TA Instruments DSC Q100
- TA Instruments DSC Refrigerated Cooling System
- Software: Advantage for Q Series Version 2.5, Thermal Advantage Release 4.7.3

3.3.4 Glassware and other laboratory equipment

- 25 mL and 50 mL glass beakers
- Watch glasses, diameter 4-5 cm
- Glass test tubes
- Tweezers
- Scissors
- Heating plate
- Bunsen burner

3.4 General composition of multilayer packaging films

3.4.1 Plastic polymers

Several plastic polymers, copolymers and blends are used for the production of multilayers. The most important polymers are polyethylene (LDPE, HDPE, LLDPE), polypropylene, polyamide (PA6, PA6/66, PA6/MXD6), polyethylene terephthalate, polystyrene, ethylene vinyl alcohol, polyvinylidene chloride, ethylene vinyl acetate and polycarbonate ([2]-[14]). Polyvinyl chloride may also be used as a plastic layer in multilayer food packaging ([1]). Table 1 lists the most common polymers in multilayer packaging materials, their functions in the packaging and some applications.

Table 1 Plastic polymers used in multilayer food packaging ([1], [4], [5], [6], [8], [9], [18], [26], [27], [28], [35])

Plastic polymer	Functions in multilayers	Applications
Polyethylene (PE)	heat-sealable food contact layer moisture barrier can be combined with gas/aroma barriers (e.g. PA, EVOH)	breathable packaging for fresh produce (LDPE, HDPE) carton liners (LLDPE)
Polypropylene (PP)	moisture barrier to provide mechanical strength can be coated with heat seal coatings (PVDC, acrylate) can be combined with gas/aroma barriers (e.g. PVDC coatings, PA, EVOH)	modified atmosphere packaging thermoformed containers for microwavable packaging, hot- filled packaging
Polyamide (PA)	gas/aroma barrier to provide mechanical strength heat resistance can be used as outside layer of a heat seal film \rightarrow film will not stick to the sealing bar surface	boil-in-bag packaging thermoformed packaging
Polyethylene terephthalate (PET)	gas/aroma barrier moisture barrier to provide mechanical strength heat resistance	plastic bottles for carbonated softdrinks, meat and cheese packaging, snack food wrapper boil-in-bag, sterilisable pouches, ovenware containers
Polystyrene (PS)	gas permeability printability can be combined with gas/aroma barriers (coextruded or laminated) → commercially available structures: e.g. PS/PVDC/PS, PS/PVDC/PE, PS/EVOH/PE, PS/EVOH/PP	breathable packaging for fresh produce (e.g. fresh-meat packaging) printable outside layers
Ethylene vinyl alcohol (EVOH)	oxygen barrier needs to be protected from moisture → often sandwiched (coextruded) between PE or PP, in some applications also sandwiched between PET, PA or PS	modified atmosphere packaging packing of oxygen-sensitive food
Polyvinylidene chloride (PVDC)	gas/aroma and/or moisture barrier to protect the surface from scratches and abrasion heat-sealable food contact layer often copolymers of vinylidene chloride and ester-type monomers (e.g. ethyl acrylate)	modified atmosphere packaging applied as coating or coextruded film

Plastic polymer	Functions in multilayers	Applications
Ethylene vinyl acetate (EVA)	moisture barrier adhesion layer (tie layer) for co-extrusion of polar (e.g. PA, PET-G) and non-polar (e.g. PE) polymers heat-sealable food contact layer; heat- sealable extrusion coatings on PET or BOPP films	modified atmosphere packaging applied as coating or coextruded film
Polycarbonate (PC)	heat resistance mechanical strength moisture barrier	microwavable packaging, hot- filled packaging modified atmosphere packaging barriers for fruit juice cartons
Polyvinylchloride (PVC)	gas/aroma barrier mechanical strength	fresh food packaging (e.g. PVC/PE films) modified atmosphere packaging (e.g. PVC/EVOH/PE films)
Polyethylene naphthalate (PEN)	gas/aroma and moisture barrier heat resistance	for hot refills, rewashing, reuse beverage bottles (e.g. beer)
Glycol modified polyethylene terephthalate (PET-G)	heat-sealable food contact layer	
Ethylene acrylic acid (EAA)	extrusion coating tie layer between aluminium foil and other polymers heat-sealable food contact layer	

3.4.2 Aluminium foil

Many packaging materials, especially for high value foods (e.g. dried soups, herbs, spices), contain a layer of aluminium foil as it is an effective barrier against moisture, air, odours and UV light [26].

3.4.3 Bonding of the different layers

Multilayer films can be prepared by co-extrusion or by lamination. Co-extrusion can be performed as blown film extrusion or cast extrusion [14]. In both cases, granules of the different plastics are melted separately and the melts are brought together in the extruder. The combined plastics then are extruded as a single product in which the co-extruded layers bond directly to each other.

In order to achieve bonding of two molten polymer layers during co-extrusion, it can be necessary to apply a third polymer ("extrudable adhesive") in between. For example, anhydride-modified polyethylene or anhydride-modified EVA can act as an extrudable adhesive in the co-extrusion of PE and PA [9].

In contrast to co-extrusion, lamination combines two or more plastic or non-plastic materials (e.g. aluminium foil) in web-form by applying a certain type of adhesive between them. Three main principles of lamination can be distinguished. These are extrusion lamination, adhesive lamination and wax/hot melt lamination. In extrusion lamination, a molten polymer (e.g. LDPE) is applied to one of the webs and a second web is fed from the top. In adhesive lamination, an adhesive is applied instead. These can be solvent based adhesives ("dry bond lamination"), one- or two-component water

based adhesives ("wet-bond adhesion"), two-component solid adhesives ("solventless lamination"), UV-curing or electron beam-curing adhesives ([14], [25]).

In wax/hot melt lamination, a layer of molten wax or hot melt is applied between two webs and then cooled to bond them together. The wax remains heat sensitive. Therefore this technique is not suitable if the packaging will be heat-sealed afterwards or filled very hot ([9], [14]).

Table 2 lists some of the most important adhesives for the different types of lamination and their applications.

Type of lamination	Adhesive	Examples of selected applications
	LDPE	multilayer-multimaterial packaging (combination of plastic or aluminium foil with paper or paperboard \rightarrow e.g. fruit juice cartons)
	EVA	bonding PE to PVC
extrusion lamination	acid-containing adhesives: EAA or EMA ionomers terpolymers of ethylene, acid and acrylate (e.g. methyl acrylate or isobutyl acrylate)	used to bond with aluminium foil
	anhydride modified polyolefins: terpolymers of ethylene, maleic anhydride and acrylates (e.g. ethyl acrylate, butyl acrylate)	
dry bond lamination	solvent based PUR adhesives	flexible packaging \rightarrow lamination of plastic films (bags, pouches, wraps for snack food, meat and cheese packs, boil-in-bag food pouches)
	poly(vinyl acetate) emulsion (or coploymers of vinyl acetate and ethylene or acrylic esters)	
wet-bond	crosslinking acrylic-vinyl acetate copolymer emulsions	snack packages (e.g. potato chip bags)
adhesion	acrylic emulsion pressure-sensitive adhesives	pressure-sensitive labels
	polyurethane dispersions	lamination of plastic films in medium- performance flexible packaging where some chemical resistance is required
UV-curingacrylics and acrylates, epoxies, polyurethanes, polyesters, silicones, and vinyl and vinyl estersflexible plastic packaging (a of the webs must be transp allow UV penetration)		flexible plastic packaging (at least one of the webs must be transparent to allow UV penetration)
EB-curing	curing see UV-curable adhesives	
solventless lamination	polyurethanes	
hot-melt	EVA	
lamination	ethylene-butyl acrylate	

Table 2 Adhesives and waxes/hot melts used for lamination ([9], [14], [39], [40])

Type of lamination	Adhesive	Examples of selected applications
	LDPE	for paper bonding constructions, case seaming, bag seaming and sealing
	block copolymers of styrene, butadiene or isoprene	hot-melt pressure-sensitive adhesives for tapes and labels, attachment of PE- base cups to polyester soft-drink bottles, sealing of film-laminated frozen-food cartons
	moisture curing PUR hot melts	

3.4.4 Coatings/lacquers

Coatings or lacquers can be applied to the inside (food contact layer), outside (non-food contact layer) or in between layers to enhance the appearance or alter the physical properties of the packaging [17]. An overview of the most common types of coatings is given in Table 3.

*Table 3 Coatings used in multilayer plastic food packaging ([8], [14], [16], [17], [26], [31]). *Ionomers: EAA or EMA neutralised with cations (e.g.* Na⁺, Zn²⁺, Li⁺)

Type of coating	Purpose	Substances in use
protective coatings	to protect the surface from mechanical damage	nitrocellulose coatings, epoxy resins, reactive polyurethane systems, ionomers
heat-seal coatings	to allow heat sealability for non-sealable materials (e.g. flexible aluminium lids for yoghurt containers, polypropylene)	EAA, EVA, PVDC, PMMA, ionomers*
primers	to improve the bond between a substrate and an otherwise incompatible coating	polyethyleneimines, EAA dispersions, reactive polyethylene amines
cold seal coatings	coatings that can be sealed self-to-self using just pressure (e.g. for flow-wrapping heat-sensitive products like chocolate or ice cream)	blends of acrylic resins and latex; synthetic rubber
release lacquers	applied to the opposite surface of a plastic film that is coated with coldseal to prevent sticking and to promote easy unwinding from the reel	PA-based coatings
antimists	to prevent formation of condensate droplets/fogging on the food contact side (e.g. in fresh salad packaging)	PVDC coatings
gloss/matt coatings	to alter the visual perception of parts of the design	PVDC, PMMA, nitrocellulose coatings
gas and moisture barrier	barrier to gases/odours/flavours and moisture	PVDC, PMMA, SiO _x , AlO _x , aluminium vapour coating
UV light barrier	barrier to UV light	aluminium vapour coating

3.4.5 Non-food contact printings

Parts of the sample may also be covered with printings. A printing can be applied as a surface printing on the outside (i.e. non-food contact side) of the multilayer packaging or as a reverse printing where it is trapped between two layers of the multilayer packaging ([25], [29]). In reverse printing, the printing is usually applied to the inside surface of the outermost plastic layer of the packaging ([25]) (see Figure 1). This way, the printing is best protected against mechanical damage (scratching, rubbing) and moisture, as well as set-off (i.e. transfer of printing ink components to the food contact layer when the packaging film is stored in staples or rolled) ([29]).

Figure 1 Laminate with reverse printing (PA/print//^{PUR}PE) after boiling in ethyl acetate for 2 min

To protect surface printings (e.g. improve rub resistance) and to provide gloss or matt effects, overprint coatings can be applied. They have the same composition as the corresponding inks but do not contain pigments [15].

An overview on the main compositions of the most commonly used ink systems is provided in Table 4.

Printing ink system	Principle composition
surface print	ing inks
solvent- based inks	pigments binders: nitrocellulose, maleic resin, polyvinyl butyral, polyamide, polyurethane solvents: alcohols (ethanol, isopropanol), esters (ethyl acetate, isopropyl acetate), ethoxypropanol additives: plasticisers, slip additives (lubricants), adhesion promoters
UV-curing inks (free radical curing)	Pigments vehicles: oligomers: epoxy acrylates, polyester acrylates, polyether acrylates, urethane acrylates; monomers/reactive diluents: di-, tri-, tetrafunctional acrylates photoinitiators additives: waxes (PE/PTFE waxes), silicone oils, stabilisers
cationic UV-curing inks	pigments cationic photoinitiators: triarylsulphonium salts, diaryliodonium salts vehicles: diepoxide compounds and vinyl ethers additives
electron beam- curing inks	pigments vehicles: oligomers: epoxy acrylates, polyester acrylates, polyether acrylates, urethane acrylates

Table 4 Printing ink systems for non-food contact applications ([16], [19], [20], [21], [22])

Printing ink system	Principle composition		
	monomers/reactive diluents: di-, tri-, tetrafunctional acrylates additives		
water- based inks	pigments binders: styrene-acrylic co-polymers, acrylic co-polymers, maleic resins solvents: water, isopropanol, glycol ether, propylene glycol additives: amines, biocides, defoamers, wetting agents, waxes (PE, PTFE), slip agents		
Reverse prin	Reverse printing inks		
solvent- based inks	pigments binders: vinyl resins, polyurethane, nitrocellulose, polyamide solvents: alcohols (ethanol, isopropanol), esters (ethyl acetate, isopropyl acetate), ethoxypropanol additives		
water- based inks	pigments binder: acrylic resin solvents: water additives		

3.4.6 Direct food contact printings

For promotional reasons (e.g. special campaigns), sometimes also parts of the food contact layer may be printed (see Figure 2). For this purpose, special "direct food contact printing inks" are used. These are usually pigmented coatings based on vinyl resins or modified cellulose ([16], [23], [24]).

Figure 2 Chocolate packaging with printing on the food contact layer

3.5 Analysis of the composition of a Multilayer film

3.5.1 Microtome sectioning and microscopy

It is recommended to prepare a microtome section (usually of 5 μ m thickness) of the sample first and investigate it using a transmitted light microscope with polarized light. This will allow you to see of how many layers the sample consists of and whether they are co-extruded or laminated. Adhesives in laminated samples are visible in the microtome section as thin layers of about 1-3 μ m thickness between the polymer films.

The coloration of the different layers in polarized light also gives a first idea about their identity. Transparent polyamide layers may turn green in polarized light and polyethylene terephthalate layers may appear in rainbow colours, while polyethylene or polypropylene remain colourless (see Figure 3).

Figure 3 Microtome sections of multilayer plastic laminates in polarised light

3.5.2 Identification of food contact layer and outside layer by ATR-FTIR

To identify the food contact layer (inside) and the outermost non-food contact (outside) layer of the sample, ATR-FTIR spectra of the inside and outside of the multilayer film are recorded.

ATR-FTIR settings:	spectral range:	4000-600 cm⁻¹
	number of scans:	4
	background:	air (4 scans, 4000-600 cm ⁻¹)
	resolution:	4 cm ⁻¹

The spectra are identified by comparison to the spectra database, other available standard spectra and the information provided in section 0 Table 8.

3.5.3 Separation of layers

The separation of the different layers can be achieved by taking advantage of their different solubility properties. Having identified the food contact layer and the outermost layer (coating, printing ink or polymer film), a proper solvent or acid can be selected to dissolve and remove these outer layers. Alternatively, it is possible to split laminated layers by dissolving the adhesive in between and to split samples that contain an aluminium layer by dissolving the aluminium.

3.5.3.1 Selection of solvents

Solvents for plastic polymers

An overview about the solubility of the most common plastic polymers used for the production of flexible packaging is given in Table 5.

Polymer/coating	Soluble/decomposed in
Polyethylene (PE)	boiling p-xylene, boiling toluene, boiling dimethyl sulfoxide
Polypropylene (PP)	boiling toluene, boiling dimethyl sulfoxide
Ethylene vinyl alcohol (EVOH)	boiling N,N-dimethylformamide, hot concentrated sulfuric acid (turns black)

Table 5 Solvents and acids suitable to dissolve plastic polymers ([32], [33], [34])

Polymer/coating	Soluble/decomposed in
Polyamide (PA)	hot concentrated formic acid, 37% hydrochloric acid, hot concentrated sulfuric acid (96 w%), boiling N,N-dimethylformamide
Polyethylene terephthalate (PET)	boiling N,N-dimethylformamide (swells), hot concentrated sulfuric acid
Polystyrene (PS)	toluene, chloroform, cyclohexanone, butyl acetate, carbon disulfide, acetone, methylene chloride, ethyl acetate, boiling N,N- dimethylformamide*, hot concentrated sulfuric acid (96 w%) (turns black)
Polyvinylchloride (PVC)	tetrahydrofuran, cyclohexanone, N,N-dimethylformamide, methyl ethyl ketone
Polyvinylidene chloride (PVDC)	boiling xylene, boiling N,N-dimethylacetamide, boiling cycloheptanone, di-n-butyl sulfoxide
Polycarbonate (PC)	methylene chloride, boiling N,N-dimethylformamide*, boiling dimethylsulfoxide*, hot concentrated sulfuric acid (96 w%) (turns black), acetone (swells), boiling toluene (swells)
Ethylene vinyl acetate (EVA)	toluene

*requires strong heating and long time

Solvents for adhesives in laminated samples (PUR adhesives, Polyester acrylates)

Most commonly used adhesives in the manufacturing of flexible food packaging are polyurethane (PUR) and acrylic or acrylate based adhesives. PUR adhesives can be easily dissolved in formic acid. Note that this procedure might also dissolve possible polyamide layers and others soluble in formic acid. An alternative can be to use ethyl acetate or other suitable solvents instead (see Table 6).

Note that all samples which contain an aluminium foil or an aluminium vapour coating as well as reverse printed samples are somehow laminated to bond the aluminium layer or reverse printed film, respectively, to the other plastic layers. In conclusion, one can always try to immerse any sample containing an aluminium layer or any reverse printed sample in formic acid or ethyl acetate (or other suitable solvents) to dissolve the adhesive layers (see Figure 4).

Figure 4 Sample (PET/print//^{PUR}Al foil//^{PUR}PE) before and after boiling in HCOOH for 5 min. Resulting 3 separated layers: PET/print, Al foil, PE (top and bottom view shown)

Polymer/coating	Soluble/decomposed in
Polyurethane (PUR)	formic acid, methylene chloride (swells), acetone (swells), ethyl acetate (swells)
Polyacrylates	boiling xylene, toluene, methylene chloride, acetone, ethyl acetate

Table 6 Solvents and acids suitable to dissolve adhesive ([32], [33])

Dissolving aluminium foil or aluminium vapour coatings

An aluminium foil or an aluminium vapour coating (i.e. a thin aluminium layer applied by thermal evaporation) itself can be dissolved by immersion in concentrated hydrochloric acid (37 % w/w). If the complete sample is immersed, the sample will split in two parts, the one above and the one below the aluminium layer (see Figure 5).

Figure 5 Sample with an inner aluminium foil before and after boiling in conc. HCl for 4 min (Al is partly dissolved) and 5 min (Al is completely dissolved)

Removal of printings and coatings

Ink films and coatings often can be wiped off with a paper towel or cotton stick soaked in a suitable solvent. For example, acrylate and nitrocellulose coatings usually can be wiped off with ethyl acetate. If this is not successful, the sample can be immersed in solvent and, if necessary, heated until the coating is completely dissolved (NOTE: sometimes additional rubbing with a paper towel is required).

An overview about suitable solvents for the most common coatings and printing ink films is provided in Table 7.

Polymer/coating	Soluble/decomposed in
Polyvinylidene chloride (PVDC)	boiling xylene, boiling N,N-dimethylacetamide, boiling cycloheptanone, di-n-butyl sulfoxide
Ethylene vinyl acetate (EVA)	toluene
Nitrocellulose (CN)	ethyl acetate, acetone
Polyacrylates	boiling xylene, toluene, methylene chloride, acetone, ethyl acetate
Polymethyl methacrylate (PMMA)	toluene, methylene chloride, acetone, ethyl acetate
Polyurethane (PUR)	formic acid, methylene chloride (swells), acetone (swells), ethyl acetate (swells)
Aluminium metallisation	37% hydrochloric acid

Table 7 Solvents and acids suitable to dissolve binders of printing inks and coatings ([32], [33], [34])

3.5.3.2 Immersing the sample in solvent

Cut a sample piece of about 1 cm x 3 cm. It should be of asymmetric shape (e.g. trapezoid) to distinguish between the inner and outer side of the multilayer (and later on the layers peeled off) (see Figure 6).

Outer side

Inner side (food conact)

Figure 6 Sample preparation

Approximately 5 to 10 mL of solvent or acid (selected according to 0) are filled into a 25 or 50 mL glass beaker. To prevent boiling retardation later on, add 2-3 glass beads. The sample piece is added (use tweezers!) and the beaker is covered with a watch glass. Never put more than 1 sample piece into the beaker at the same time. Otherwise there is a risk to lose track of which sample eventually split off layers belong.

The beaker is placed on a hot plate and heated carefully to make the solvent boil. Depending on the type of plastic, it may take up to 10-15 min until the respective sample layer is dissolved completely in the boiling solvent. However, often it is useful to immerse the sample only for a short time until parts of the respective layer are dissolved and then to tear or peel off the upper layer. Therefore, check every 1-2 minutes whether parts of the sample are already swollen or dissolved (especially at the edges of the sample piece). If so, take out the sample with a pair of tweezers, rinse it with a nontoxic solvent (e.g. ethanol) or distilled water to remove adhering solvent and acid, respectively, dry it with a paper towel and then try to peel off the upper layer using some tweezers. Do not forget to remove the beaker from the hot plate when you are finished. Heating can also be performed in glass test tubes using a Bunsen burner. This process is faster but more difficult to control.

Some coatings and adhesives as well as aluminium foil or aluminium vapour coatings are dissolvable already at room temperature but the process may take 1-24 h. By additional heating (hot plate or Bunsen burner), the process can be accelerated and shortened to a couple of minutes.

3.5.4 Identification of the layers peeled off and laid open (ATR-FTIR spectroscopy)

Once a layer is peeled off, record an ATR-FTIR spectrum of the surface laid open. It is advisable to record also ATR-FTIR spectra of top and bottom of the layer peeled off. This will help to make sure that the layer peeled off was a monolayer.

If the respective layers were laminated, the adhesive was laid open. It may stick to both sides, i.e. the upper layer peeled off and also to the remaining multilayer (see Figure 7).

Figure 7 PUR adhesive sticks to the aluminium foil and partly also to the PA layer after separation

ATR-FTIR settings:	spectral range:	4000-600 cm ⁻¹
	number of scans:	4
	background:	air (4 scans, 4000-600 cm ⁻¹)
	resolution:	4 cm ⁻¹

The spectra are identified by comparison to the spectra database or other available standard spectra. An overview on characteristic bands in FTIR spectra of some plastic polymers, binders for printing inks and adhesives is also provided in Table 8.

Polymer	ATR-FTIR spectrum	Vibration*	Wave number** [cm ⁻¹]
Polvethylene		v_aCH_2 and v_sCH_2 δCH_2	3000-2840 1463
	E 70 60 50 40 40 40 40 500 500 500 50	ρCH ₂	725
Polypropylene $\underbrace{-}_{CH_{3}}^{CH_{3}} \underbrace{-}_{n}^{-}$		v_aCH_2 and v_sCH_2 v_aCH_3 and v_sCH_3 δCH_2 and δ_aCH_3 δ_sCH_3 ρCH_3 vC-C	3000-2840 3000-2840 1459 1376 1167 998, 973
	50 4000 3500 3000 2500 2000 1500 1000 500 [cm ^{.1}]	ρCH ₂	840
Polyethylene terephthalate -{o-li-()-cH2-OH2- _	105 95 86 75 55 45 35 25	v=CH v_aCH_2 and v_sCH_2 vC=O vPh vC(=O)O and δ =CH vO-C and δ =CH δ =CH γ =CH	3150-3000 3000-2840 1718 1600-1325 1260 1100 1018 971, 872
	15 4000 3500 3000 2500 2000 1500 1000 500 [cm ⁻¹]	γPh	726
Polystyrene	$ \begin{array}{c} 100\\ 90\\ 80\\ 70\\ \hline \hline$	v=CH v_aCH_2 and v_sCH_2 overtones vPh $\delta=CH$ $\gamma=CH$	3150-3000 3000-2840 2000-1660 1600-1375 1180, 1154, 1069, 1028 906, 842, 758
	10 4000 3500 3000 2500 2000 1500 1000 500 [cm*]	γPh	700, 540

Table 8 Characteristic bands in FTIR spectra ([32], [37], [41], [42]).

Polymer	ATR-FTIR spectrum	Vibration*	Wave number** [cm ⁻¹]
Polycarbonate	$\begin{bmatrix} 106 \\ 100 \\ 95 \\ 90 \\ 85 \\ 80 \\ 75 \\ 70 \\ 66 \\ 60 \\ 4000 \\ 3500 \\ 3000 \\ 2500 \\ 200 \\ 1500 \\ 1000 \\ 500 $	v=CH v_aCH_3 and v_sCH_3 vC=O vPh v_aC-O-C $\delta=CH$ v=CH	3150-3000 3000-2840 1773 1506 1228 1192, 1162, 1126, 1015 821
Polyamide 6	$\begin{bmatrix} 100 & 500 & 500 & 100 & 100 & 100 & 100 & 300 \\ 100 & & & & & & \\ 90 & & & & & & \\ 90 & & & & & & \\ 80 & & & & & & \\ 80 & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 80 & & & & & & & \\ 70 & & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & \\ 70 & & & & & & & & \\ 70 & & & & & & & & \\ 70 & & & & & & & & \\ 70 & & & & & & & & \\ 70 & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & \\ 70 & & & & & & & & & & \\ 70 & & & & & & & & & & \\ 70 & & & & & & & & & & & \\ 70 & & & & & & & & & & & \\ 70 & & & & & & &$	$\gamma = CH$ vNH v_aCH_2 v_sCH_2 vC=O δNH and vCN δCH_2 ωCH_2 and τCH_2 γNH and $\gamma C=O$	3303 2935 2860 1635 1539, 1276 1465 1200 690
Ethylene vinyl acetate $\frac{-\left(CH_2 - CH_2\right)}{\left(CH_2 - CH_2\right)} \left(CH_2 - CH_2 - CH_2\right)}_{n} \left(CH_2 - CH_2 - C$	$\begin{bmatrix} 100 \\ 90 \\ 80 \\ \hline \\ $	v_aCH_2 and v_sCH_2 v_aCH_3 and v_sCH_3 vC=O δCH_2 and δ_aCH_3 δ_sCH_3 vC(=O)O $vO-C$ and ρCH_3 ρCH_2	3000-2840 3000-2840 1740 1469 1371 1241 1020 720
Nitrocellulose (cellulose nitrate) $\begin{bmatrix} NO_2 & NO_2 \\ O & H & O \\ O & O \\ O$	Ent j 100 90 80 80 50 40 40 40 40 40 40 40 40 40 500 50	vOHO v_aCH_2 and v_sCH_2 v_aNO_2 v_sNO_2 vC-O pCH_2 vC(=O)O vO-C vN-C pCH_2	3400 3000-2840 1654 1279 1063 841 1223 1111 1000 809
Polyvinylidene chloride $\left[\begin{array}{c} CH_2 - C \\ CH_2 - C \\ C \\ C \\ C \\ C \\ C \\ n \end{array} \right]_n$	105 106 90 85 52 80 75 70 65 60 55 4000 3500 3000 2500 2000 1500 1000 500 [cm ⁴]	v _a CH ₂ and v _s CH ₂ δCH ₂ γCH ₂ v _s C-C vCCl ₂	3000-2840 1405 1064 1044 600, 655

Polymer	ATR-FTIR spectrum	Vibration*	Wave number**
			[cm ⁻⁺]
Polyester		v=CH (aryl)	3150-3000
acrylate	95	v_aCH_2 and v_sCH_2	3000-2840
	85 -	vC=O	1728
R	75 -	vC=C (vinyl ester)	1636***, 1610***
	F 65 -	vPh	1600-1325
СH ₂	55 -	δCH ₂	1453
	45 -	δC=C (vinyl ester)	1408***
R: aromatic	35 -	vC(=0)0	1242
polyester	25	$v_{as}C(=0)-0-C$	1163
	4000 3500 3000 2500 2000 1500 1000 500 [cm ⁻¹]	(acrylate polymer)	
		γC=C (vinyl ester)	810***
		γPh	726

*: v_a : antisymmetric stretching vibration, v_s : symmetric stretching vibration, δ : in-plane deformation, γ : out-of-plane, ρ : rocking vibration, ω : wagging vibration, τ : twisting vibration

**: The wave numbers given refer to transmission spectra and differ slightly from those obtained by ATR measurement.)

***: The characteristic vinyl ester moieties $CH_2=CH-C(=O)-O\sim$ of UV/EB curable acrylate printings or adhesives react upon curing and form the acrylate polymer backbone. As a consequence, the respective characteristic vinyl ester bands at 1636 (vC=C), 1610 (vC=C), 1408 (δ C=C) and 810 (γ C=C) cm⁻¹ decrease and are no longer present/barely-there if the printing ink or adhesive was well cured ([41], [42], [43], [44]).

3.5.5 Specification of layers with DSC

The separated polymer layers can be further characterised by their melting points with differential scanning calorimetry (DSC) to confirm the results obtained by ATR-FTIR and to specify the findings. DSC will enable to distinguish between LDPE, LLDPE and HDPE as well as PA 6, PA 66 and PA MXD6 and blends of different polymers [30]. You can also perform a DSC of the complete laminate. This will give an idea about the types of plastic polymers that are contained in the multilayer sample (see Figure 8).

Figure 8 DSC diagrams of a laminate (PET/acrylate printing//^{PUR}Al foil//^{PUR}PA//^{PUR}PE) and its single polymer layers (PET, PA, PE) after separation

DSC settings:	Start temperature:	50°C
	End temperature:	300°C
	Heating rate:	20°C/min
	Reference:	air
	Amount of sample:	for separated monolayers: 0.5-2.5 mg
		for multilayer samples: 10 mg

An overview about melting temperatures of some common plastic polymers in flexible packaging is provided in Table 9.

Table 9 Glass transition (T_g) and crystalline melting temperatures (T_m) of some common plastic polymers ([30], [36], [36], [38])

Polymer	Т ₉ [°С]	T _m [°C]
Polyethylene		105-113 (LDPE)
	-20	120 (LLDPE)
		135 (HDPE)
Polypropylene	5	160
Polyvinylchloride	80	-
Polyvinylidene chloride	-18	190
Atactic polystyrene	95	-
Isotactic polystyrene	100	230
Polyethylene terephthalate	67	256
Polycarbonate (made of Bisphenol A)	150	225
Polyamide 6	50	215
Polyamide 66	60	266
Ethylene vinyl acetate		80-110 (depends on EA content)

3.5.6 Special analytical tests for the identification of printing inks and coatings

Besides identification with ATR-FTIR spectroscopy, some of the printing inks and coatings can also be identified by simple chemical tests.

Nitrocellulose (cellulose nitrate, CN) - Diphenylamine test

To prepare the reagent, 0.1 g diphenylamine are suspended in 30 mL water and then 100 mL concentrated sulfuric acid are added carefully. A drop of the freshly prepared solution is applied to the sample surface. The reaction is positive for nitrocellulose if the reagent turns dark blue. [33]

Polyvinylidene chloride (PVDC) – Reaction with pyridine and Beilstein test

A drop of pyridine is applied to the sample surface. After 2-5 min, a drop of 5% w/v methanolic sodium hydroxide solution is added (1 g sodium hydroxide dissolved in 20 mL methanol). The reaction is positive for PVDC if the surface turns brown-black

immediately. PVC instead would show a red-brown colour first, and after approx. 5 min the colour would turn into black-brown. [33].

In addition, the Beilstein test can be performed to proof the presence of chlorine. A copper wire is heated in a Bunsen flame until the flame is colourless. The wire is allowed to cool down. Then a piece of the sample is placed on it (the chlorine containing layer should face the wire) and the copper wire plus sample are heated at the edge of the colourless part of the Bunsen flame. A green or blue-green flame will indicate the presence of chlorine when the sample burns. [33]

3.6 Examples

Laminate 1 (PET/polyester acrylate printing//^{PUR}Al foil//^{PUR}PA//^{PUR}PE)

Sample:

Step I: General observations

- The sample is **printed** (not yet known whether it is a surface or reverse printing)
- The sample contains an **aluminium layer** (not yet known whether it is an aluminium foil or an aluminium vapour coating).

Step II: Microtome section (5 µm thickness)

The microtome section displays that:

- The sample consists of **3 different polymer films** and an **aluminium foil**.
 Polymer film 1 appears in rainbow colours in polarized light and therefore is likely to consist of PET. Polymer film 2 appears green, so it might be a polyamide layer.
- The printing was applied as a **reverse print** on the bottom side of polymer film
 1.

- There are no co-extruded layers, all layers are **laminated** with adhesives.
- schematic composition:

polymer 1
print
adhesive
aluminium foil
adhesive
polymer 2
adhesive
polymer 3

Step III: ATR-FTIR of the inside (food contact layer) and outside (non-food contact)

Results:

- The outside layer consists of PET.
- The food contact layer consists of PE.

Step IV: Separation of layers

From the information gained in step I-III, the following options arise to start the separation of the layers:

- 1) The food contact layer consists of PE. \rightarrow Try to dissolve/swell the PE layer in **DMSO**, toluene or xylene and remove it.
- 2) The sample contains an aluminium foil. \rightarrow Try to dissolve the aluminium in **conc. HCI** to split the sample.
- 3+4) The sample contains an aluminium foil. The plastic films on top of and below the aluminium foil must be somehow adhered to it. \rightarrow Try to dissolve the adhesive on top of and below the aluminium foil in **conc. HCOOH** or **ethyl acetate** to split the sample.

Step IV: Separation of layers - option 1 - start with DMSO

Step IV: Separation of layers - option 2 - start with conc. HCl

Step IV: Separation of layers - option 3 - start with conc. HCOOH

Step IV: Separation of layers - option 4 - start with ethyl acetate

polymer 2 = PA adhesive = PUR polymer 3 = PE

To confirm that the "white layer" on the bottom side of part A is a reverse printing and to check what is below, follow the descriptions in option 1 step 14

Characterisation of the printing: Go back to step 2 and follow step 15 described in option 1

SUMMARY OF RESULTS:

Identified composition of layers: PET/polyester acrylate printing//^{PUR}AI foil//^{PUR}PA//^{PUR}PE

outside

food contact side

Laminate 2 (PA/polyester urethane printing//^{PUR}PE)

Step I: General observations

Sample:

- The sample is partially printed (surface or reverse printing \rightarrow not yet known).
- The sample does not contain an aluminium layer.

Step II: Microtome section - not available

Step III: ATR-FTIR of the inside (food contact layer) and outside (non-food contact)

ATR-FTIR: complete laminate (outside) = **PA**

ATR-FTIR: complete laminate (inside) = **PE**

Results:

- The outside layer consists of PA.
- The food contact layer consists of PE.

Step IV: Separation of layers

From the information gained in step I-III, the following options arise to start the separation of the layers:

- 1) The food contact layer consists of PE. \rightarrow Try to dissolve/swell the PE layer in **DMSO**, toluene or xylene and remove it.
- 2) The outside layer consists of PA. \rightarrow Try to completely dissolve the PA layer in **conc. HCOOH** to check what is below.

Step IV: Separation of layers - option 1 - start with DMSO

 7
 Image: Second sec

Part A is dissolved immediately. Only the green printing ink film remains in the beaker. \rightarrow Part A seems to consist only of PA.

Check whether part B is really a monolayer or whether it consists of coextruded layers, e.g. two PE layers with an EVOH layer in between:

boil part B for 5 min in conc. $H_2SO_4 \rightarrow$ if there was an EVOH layer in between, it would be decomposed (turn black) and you would see a thin black-brown line at the edges of the sample

Residues of the green printing on top of part B were decomposed (turned black). \rightarrow Can be rubbed off with a paper towel.

Having a closer look to the edges of part B after treatment with H_2SO_4 , you can see that there is no black line visible. \rightarrow There is no EVOH layer sandwiched between two PE layers. \rightarrow The PE layer is probably a monolayer.

Check whether part A consists only of PA by dissolving it completely in cold HCOOH: Go back to step 6 and follow the descriptions in option 1 step 6-7

SUMMARY OF RESULTS:

Identified composition of layers: PA/polyester urethane printing//^{PUR}PE

РА
print = polyester urethane
adhesive = polyester urethane
PE

food contact side

References

- [1] Alfatherm SpA (2014). Packaging Films. Retrieved April 24, 2014, from <u>http://www.alfatherm.it/en/applications/packaging-films/</u>
- [2] Sidwell JA (1992). Food Contact Polymeric Materials. Rapra Review Reports. Vol. 6 (1), Report 61
- [3] Anon. (1996). Understanding Plastic Film: Its Uses, Benefits and Waste Management Options. Retrieved April 24, 2014, from <u>http://plastics.americanchemistry.com/Understanding-Plastic-Film</u>
- [4] Krohn JV, Todd WG, Culter JD (n.d.). Optimizing barrier performance of multi-layer polyethylene films. Retrieved April 24, 2014, from <u>http://www.lyondellbasell.com/techlit/techlit/Brochures/Barrier%20Performance%20</u> <u>Multi-Layer%20Film%209366.pdf</u>
- [5] Haux V (2006). Multilayer films: a solution for demanding food packaging applications. Food, 3, p. 19-22. Retrieved April 24, 2014, from <u>http://www.kpfilms.com/de/news/pdfs/case%20studies/Multilayer%20films%20a%22</u> <u>Osolution%20for%20demanding%20food%20packaging%20applications%20English.</u> <u>pdf</u>
- [6] Goetz W (2003). Polyamide for Flexible Packaging Film. 2003 PLACE Conference, 12-14 May 2003, Rome, Italy. Retrieved April 24, 2014, from http://www.tappi.org/content/enewsletters/eplace/2004/10-2goetz.pdf
- [7] PolyOne Corporation (2013). Spartech Packaging Sheet Products. Retrieved April 24, 2014, http://www.spartech.com/packaging/products.html#productSummaryChart
- [8] Kenneth J. Valentas, Enrique Rotstein, R. Paul Singh (1997). Handbook of Food Engineering Practice. CRC Press LLC, p. 305 et segg.
- [9] Kit L. Yam (ed.) (2009). The Wiley Encyclopedia of Packaging Technology. 3rd edition, John Wiley & Sons, p. 974
- [10] ILSI Europe Packaging Material Task Force (2000). Packaging Materials: 1. Polyethylene Terephthalate for Food Packaging Applications. ILSI Europe Report Series. Brussels. Retrieved April 24, 2014, from <u>http://www.ilsi.org/Europe/Publications/R2000Pac_Mat1.pdf</u>
- [11] ILSI Europe Packaging Material Task Force (2002). Packaging Materials: 2. Polystyrene for Food Packaging Applications. ILSI Europe Report Series. Brussels. Retrieved April 24, 2014, from http://www.ilsi.org/Europe/Publications/R2002Pac_Mat2.pdf
- [12] Tice P (2002). Packaging Materials: 3. Polypropylene as a Packaging Material for Foods and Beverages. ILSI Europe Report Series. Brussels. Retrieved April 24, 2014, from <u>http://www.ilsi.org/Europe/Publications/R2002Pac_Mat3.pdf</u>
- [13] Tice P (2003). Packaging Materials: 4. Polyethylene for Food Packaging Applications. ILSI Europe Report Series. Brussels. Retrieved April 24, 2014, from <u>http://www.ilsi.org/Europe/Publications/R2003Pac_Mat.pdf</u>
- [14] Dixon J (2011). Packaging Materials: 9. Multilayer Packaging for Food and Beverages. ILSI Europe Report Series. Brussels. Retrieved April 24, 2014, from <u>http://www.ilsi.org/Europe/Publications/ILSI-11-011%209%20pack%2003.pdf</u>
- [15] Sutter J, Dudler V, Meuwly R (2011). Packaging Materials: 8. Printing Inks for Food Packaging. Composition and Properties of Printing Inks. ILSI Europe Report Series. Brussels. Retrieved April 24, 2014, from <u>http://www.ilsi.org/Europe/Documents/ILSI-11-015%20printing%20inks_finallr.pdf</u>

- [16] CEPE (2009). Code of Practice for Coated Articles where the Food Contact Layer is a Coating. Working Document. Edition 4. 2nd February 2009 (available at <u>http://www.cepe.org/EPUB/easnet.dll/ExecReq/Page?eas:template im=100087&eas:</u> <u>dat im=05043D</u>)
- [17] Americk Primopost (2014). Coatings. Retrieved April 24, 2014, from <u>http://www.primopost.com/coatings.asp</u>
- [18] Paisley K (2007). PVDC New Developments, New Opportunities. 2007 TAPPI PLACE Conference, 19 September 2007, St. Louis, USA. Retrieved April 24, 2014, from <u>http://www.tappi.org/content/events/07place/papers/paisley.pdf</u>
- [19] Packflex Flexible Packaging Inks Division (2012). Rotogravure Printing Inks. Retrieved April 24, 2014, from <u>http://www.flexiblepackaginginks.com/rotogravure-printing-inks.htm</u>
- [20] Packflex Flexible Packaging Inks Division (2012). Flexographic Printing Inks. Retrieved April 24, 2014, from <u>http://www.flexiblepackaginginks.com/flexographic-printing-inks.htm</u>
- [21] Xiamen Green spring environmental Greenway Technology Materials Co. (2013). Rotogravure reverse printing water based ink for laminating plastic film. Retrieved April 24, 2014, from <u>http://www.greenspring-ink.com/en/pd.jsp?id=653& pp=2_351</u>
- [22] DIC India Limited (n.d.). Gravure Ink. Retrieved April 24, 2014, from <u>http://www.dicindialtd.co/pns-gravure-ink.html</u>
- [23] Colorcon (2012). No-Tox Products. Technical Data. No-Tox® Gravure Vinyl Inks. NT14 (02/12). Retrieved April 24, 2014, from <u>http://www.colorcon.com/notox/literature/sales/NT14-Gravure-</u> <u>Offset%20Gravure%20Vinyl 2.pdf</u>
- [24] Colorcon (2012). No-Tox Products. Technical Data. No-Tox® Flexo/Gravure Inks. NT04 (02/12). Retrieved April 24, 2014, from http://www.colorcon.com/notox/literature/sales/NT04-Flexo-Gravure 2.pdf
- [25] Lapin SC (2006). Ink Bonding Properties of Electron Beam Cured Adhesive Laminates for Flexible Packaging. 2006 PLACE Conference 17-21 September 2006, Cinninati, Ohio, USA. Retrieved April 24, 2014, from <u>http://www.tappi.org/content/enewsletters/eplace/2007/06PLA45.pdf</u>
- [26] Marsh K and Bugusu B (2007). Food Packaging Roles, Materials, and Environmental Issues. Journal of Food Science. 72(3), pp. R39-R55
- [27] Richter L, Biedermann-Brem S, Simat TJ, Grob K (2014). Internal bags with barrier layers for foods packed in recycled paperboard: recent progress. Eur Food Res Technol. DOI 10.1007/s00217-014-2208-x
- [28] Schut JH (2000). Polystyrene blown film starts to get some respect. Plastics Technology, November 2000. Retrieved April 24, 2014, from <u>http://www.ptonline.com/articles/polystyrene-blown-film-starts-to-get-some-respect</u>
- [29] U.S. Environmental Protection Agency (2002). Flexographic Ink Options: A Cleaner Technologies Substitutes Assessment. Volume 1. Chapter 4: Performance. EPA 744-R-02-001A. Retrieved April 24, 2014, from http://www.epa.gov/dfe/pubs/flexo/ctsa/index.html
- [30] Forrest JM (2002). Analysis of Plastics. Rapra Review Reports. Vol. 13 (5), Report 149
- [31] Dow Wolff Cellulosics GmbH (n.d.). Nitrocellulose. Retrieved April 25, 2014, from <u>http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08a6/0901b803808a6</u> <u>80d.pdf?filepath=/822-00007.pdf&fromPage=GetDoc</u>

- [32] Verleye GAL, Roeges NPG, De Moor MO (2001). Easy Identification of Plastics and Rubbers. Shawbury, Shrewsbury, Shropshire (UK): Rapra Technology Limited.
- [33] Braun D (1996). Simple Methods for Identification of Plastics. With the Plastics Identification Table by Hansjurgen Saechtling (translated by Edmund Immergut). 3rd, revised edition. Cincinnati, Ohio : Hanser/Gardner Publications; Munich: Hanser
- [34] Dow Chemical Company (2000). Vinylidene Chloride Monomer and Polymers. A Technical Report on VDC and PVDC. (Reprinted from Kirk-Othmer: Encyclopedia of Chemical Technology, 4th edition, vol. 24. New York: John Wiley & Sons, Inc. 1997, pp. 882-923.) Retrieved May 3, 2014, from <u>http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh 005d/0901b8038005d</u> 707.pdf?filepath=plastics ap/pdfs/noreg/190-00347.pdf&fromPage=GetDoc
- [35] Scheirs J (2000). Compositional and Failure Analysis of Polymers. A practical approach. Chichester: John Wiley & Sons, Ltd., p. 102
- [36] Vasile C, Pascu M (2005). Practical Guide to Polyethylene. Shrewsbury: Rapra Technology Limited
- [37] Bower DI, Maddams WF (1989). The vibrational spectroscopy of polymers. Cambridge Solid State Science Series. Cambridge: Cambridge University Press
- [38] Arsac A, Carrot C, Guillet J (2000). Determination of primary relaxation temperatures and melting points of ethylene vinyl acetate copolymers. J. Therm. Anal. Cal., 61(3): 681-685
- [39] Jopko L (2004). Flexible Packaging Adhesives The Basics. Retrieved May 08, 2014, from <u>http://www.tappi.org/content/enewsletters/eplace/2004/14-3Jopko.pdf</u>
- [40] Rolando T.E. (1998). Solvent-Free Adhesives. Rapra Review Reports. Vol. 9 (5), Report 101
- [41] Bauer F, Decker U, Czihal K, Mehnert R, Riedel C, Riemschneider M, Schubert R, Buchmeister MR (2009). UV curing and matting of acrylate nanocomposite coatings by 172 nm excimer irradiation. Prog. Org. Coat., 64: 474-481
- [42] Photoinitiator-free UV curing and matting of acrylate-based nanocomposite coatings: Part 3. Prog.Org. Coat., 77: 1085-1094
- [43] Park Y-J, Lim D-H, Kim H-J, Park D-S, Sung I-K (2009). UV- and thermal-curing behaviors of dua-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 29: 710-717
- [44] Lee B-H, Choi J-H, Kim H-J (2006). Coating performance and characteristics for UV-curable aliphatic urethane acrylate coatings containing Norrish Type I photoinitiators. JCT Research, 3(3): 221-229

Annex 1: Example of protocol for operating a rotary microtome

Note: the example given is the one used for JRC FCM activities. It is intended as an illustrative example only and in no way constitutes a recommendation nor any commercial endorsement.

Scope and field of application

This procedure describes the activities to be carried out in order to properly handle and maintain the rotary microtome SLEE medical CUT 4062 accessible in the FIT-EURL group of the CAT Unit, Bld. 26, Lab 017. The rotary microtome is used to perform cross-sections of multilayer plastic films. Strict respect of this SOP is required to all operators within FIT-EURL laboratories.

Materials and reagents

Materials needed for cross-sectioning

- foldable plastic plates in which the multilayer plastic film is sandwiched during sectioning (e.g. 40 x 10 x 1.5 mm, polystyrene, white, purchasable from MicroKern (www.micro-kern.de), Art.no. MK99997);
- sectioning tape (highly transparent, with low birefringence) (e.g. 21 x 14.8 cm, Avery GRAPHICS, purchasable from MicroKern (www.micro-kern.de), Art.no. MK99990_100B).

Materials needed for embedding of cross-sections

- microscope slides (76 x 26 mm);
- cover slips (24 x 24 mm);
- mounting medium for coverslipping of slides (e.g. LEICA CV Ultra, Art.no. 0709 36261);
- paper towels.

Equipment

Rotary microtome

- rotary microtome: SLEE medical CUT 4062 (SN: A 14 0017)
- specimen holder: standard object clamp, orientable (SLEE medical, Art.no. 10090006);
- blade holder;
- disposable blades (stainless steel, low profile, e.g. SLEE medical, Art.no. 28407000).

Other laboratory equipment

- scissors (1 pair of ordinary scissors, 1 pair of dissecting scissors);
- paint brush;
- tweezers;
- dissecting needle;
- permanent marker;
- Allen key (size 3 x 100 mm, 4 x 150 mm, 6 x 100 mm).

Use of the equipment (Microtome sectioning)

To set up the microtome and to perform the microtome sectioning, carry out the following instructions in the given order. Please fill in the instrument table after use (see Annex 1).

Install the orientable standard object clamp

The microtome should be equipped with the object orientation **(A)**. If not, install it and fasten all 4 screws using an Allen key (size 4×150 mm).

NOTE: To access the screws of the object orientation, it may be necessary to move the specimen holder towards you by turning the trimming hand wheel **(B)** on the left counterclockwise.

Now take the standard object clamp and unscrew it.

Install the corpus of the standard object clamp **(C)** at the object orientation. Use an Allen key (size 3×100 mm) to fasten the two screws.

Reassemble the remaining parts of the standard object clamp.

Check the position of the specimen holder. If it sticks out a lot, move it back inwards by turning the trimming hand wheel **(B)** clockwise. Otherwise it might be difficult later on to position the blade holder correctly and the limit for moving the specimen holder outwards might be reached during trimming or sectioning. An acoustic noise informs you that the limit to move the specimen holder inwards/outwards was reached. Stop turning the trimming hand wheel **(B)** immediately when you hear it.

Inserting a sample of a multilayer plastic film into the standard object clamp

Cut a strip of approx. $0.8 \text{ cm} \times 1.5 \text{ cm}$, but no bigger than 1 cm x 2 cm, from the multilayer plastic film sample. Use the dissecting scissors to do so. With an ordinary pair of scissor, you might squeeze the edges of the sample strip.

Insert the sample strip in between one of the foldable plastic plates. Pay attention whether the non-food contact side (outside) of the sample faces upwards or downwards. To avoid confusion, it should always face upwards.

NOTE: If later on problems appear and the sections are not cut off completely from the specimen, the right edge (which will be the upper edge when inserted into the standard object clamp) of the foldable plate with the sample strip in between can be cut off with a razor blade.

Insert the folded plastic plate into the standard object clamp. Again the non-food contact side (outside) of the sample should face upwards.

If necessary, adjust the angle of the object orientation as described in the operation manual (see **Error!** eference source not found. p. 15 section 7.3). Adjusting the screws on top (D) and on the left (E) of object orientation, the sample should be oriented parallel to the x-z-plane. This is necessary to avoid problems in setting the blade angle in a later stage. Then loosen the metal arm **(F)** on the right to change the orientation in the x-z-plane. The sample should be oriented neither parallel nor perpendicular to the blade (see Error! Reference source not ound.). Best is an oblique angle of about 15°-45° in the x-z-plane.

Install the blade holder and adjust the blade angle

After having inserted the specimen and adjusted the object orientation, take out the blade holder from the plastic box. Be careful when handling the blade holder. The blade is very sharp and you can easily injure yourself when touching it. The red metal bar ("finger protection guard") **(G)** should always be folded up to shield the blade and to prevent accidently touching it.

Put the blade holder on the metal rail and fasten it by pulling tight the metal arm **(H)** on the lower left.

Set the blade angle by loosening the screw on the lower right (I) with an Allen key (size 6 x 100 mm). As all blades are wedge shaped, the correct blade angle should always be set in the following way (see Error! Reference ource not found.): The lower bevel face has to be positioned parallel to the specimen block and the plane of motion. Then the angle should be slightly raised by another 1/2 degree. This prevents the lower bevel face from sliding over the specimen block and possibly producing friction damage. Using the low profile disposable blades made of stainless steel (SLEE medical Art.no. 28407000), an angle of about 2° should be suitable for use.

Position the blade holder for trimming

Before trimming, check again the position of the blade holder. Loosen the hand wheel stop (J) on the right and slowly turn the hand wheel (K) on the right to move the specimen holder down.

The blade holder should be positioned close to the specimen but the blade should not yet touch the specimen. 0.5-1 mm of distance between blade and specimen are enough. Otherwise trimming will take much longer. If necessary, reposition the blade holder by loosening the metal arm **(H)** on the lower left. (NOTE: Refasten the hand wheel stop **(J)** before you readjust the blade holder position.)

Select a virgin part of the blade for cutting by shifting the blade holder horizontally. To do so, loosen the metal arm **(L)** on the lower right of the blade holder block.

Those parts of the blade that were used already for sectioning are marked with a small dot. Starting from the last mark on the blade, move the blade holder about 1 cm further left to arrive at a "virgin" part of the blade. If you have reached the end of the blade already, change the blade and use a new one (see 0)

Mark the new position where the specimen will touch the blade with a small dot on the blade using a permanent marker.

Set the trimming thickness at the upper grey knob (M) on the left front side of the microtome, labelled with "TRIM". It can be varied from 10 to 40 μ m. Usually a trimming thickness of 30 μ m is ok.

To set the cutting thickness for the actual microtome sections, turn the lower, black/grey knob **(N)**. The current setting for the section thickness is shown in the small window next to "CUT" **(O)**. For the analysis of plastic multilayers, sections of 5 μ m are generally well suited. For very fragile samples, also thicker sections of 10 μ m could be performed.

To start trimming, fold down the finger protection guard (red metal bar) **(G)**, loosen the hand wheel stop **(J)** and slowly turn the hand wheel **(K)** on the right clockwise while pressing the grey "TRIM" knob **(M)** on the left. With every turn of the hand wheel, the specimen holder will move 30 µm towards you as set before on the "TRIM" knob **(M)**. NOTE: If you turn the hand wheel **(K)** anticlockwise, the specimen holder will move 30 µm towards you as well. It will not move backwards.

After some turns of the hand wheel **(K)**, the specimen will touch the blade and sections of $30 \mu m$ thickness will be cut from the specimen. Continue like this until a plane and clear specimen surface is obtained (incl. the white plastic plates in between which the specimen is sandwiched). Do not perform the trimming sections too fast to avoid damage of the specimen surface.

Then perform another 5-10 sections of 5 μ m without pressing the "TRIM" knob **(M)** to really obtain a smooth specimen surface. When finished, fasten the hand wheel stop **(J)**.

Remove section material from the blade and the specimen holder with a dry paint brush. Be careful not to cut yourself.

The blade and specimen block should be completely clean before you proceed with the next steps.

After cleaning, fold up again the finger protection guard **(G)**.

Perform sectioning

Cut a piece (approx. 1 cm x 1.5 cm) from the sectioning tape. You can use an ordinary pair of scissors to do so. Do not use the dissecting scissors, otherwise they may become blunt.

Remove the paper from the backside of the sectioning tape and stick the sectioning tape to the surface of the specimen. Carefully press it to the specimen surface, e.g. with the wooden backside of the paint brush. Do not touch the tape with your fingers, use tweezers instead.

To prepare the microtome section, fold down the finger protection guard **(G)** and loosen the hand wheel stop **(J)**.

Turn clockwise the hand wheel **(K)** on the right with your right hand without stopping until the specimen completely passed the blade, while at the same time you keep holding the sectioning tape with some tweezers in your left hand.

(NOTE: If you turn the hand wheel **(K)** anticlockwise, the specimen will also move 5 μ m towards you, not backwards.)

The moment the blade cuts off the section of the specimen, tear off the sectioning tape with the tweezers in your left hand. To obtain a good section, the cutting has to be performed at a continuous, average speed – neither too fast, nor too slow. It will need some training to find an optimum cutting speed and to coordinate all steps.

Fasten the hand wheel stop (J) and fold up the finger protection guard (G) after the section.

The section is acceptable from a first glance when the white strips cut off from the sandwich plastic plate are straight, homogeneous and eventual knife marks (periodic waves) are only barely visible. Whether the section is really fine, can only be seen afterwards during the microscopy.

Prepare the microtome section for microscopy

If an acceptable section was obtained, take a microscope slide and apply some mounting medium with the dissecting needle.

Spread the mounting medium and put the section tape on it. The sticky surface of the tape should face the microscope slide. Gently press with the wooden shaft of the paint brush to remove eventually present air bubbles.

Apply some more mounting medium on top of the sectioning tape and cover everything with a cover slip. Again gently press with the wooden shaft of the paint brush to remove eventually present air bubbles. Clean the dissecting needle with a paper towel.

Label the microscope slide with the sample name, date, thickness of the section and the initials of the operator and draw an arrow on the cover slip pointing to the outside of the multilayer sample.

Change the blade

For changing the blade, refer to the user manual (see **Error! Reference source ot found.**, chapter 7.5, p. 17). Fold down the finger protection guard **(G)** and loosen the metal arm on the left **(P)**.

Push the button **(Q)** on the left. The blade will be pushed about 1 cm out of the slot on the right side. Then pull it out completely. Be careful not to injure yourself when handling the blade!

There is a compartment for used blades in the bottom of the blade dispenser. Insert the used blade there to store it safely.

NOTE: When all blades of the dispenser are finished (and the "used blades" compartment is full), throw away the entire dispenser (incl. the used blades) into a container for contaminated solid

waste without opening the "used blades" compartment.

Take out a new blade from the upper part of the blade dispenser.

Insert the blade in the blade holder. Use the wooden shaft of the paint brush to push it in completely.

When finished, refasten the metal arm **(Q)** on the left and fold up the finger protection guard **(G)**.

Clean the microtome after use

Clean the blade holder with a dry paint brush and put it back into the plastic box for storage. Be careful again not to injure yourself while handling the block.

Remove the specimen and clean the specimen holder with a dry paint brush.

Take a paper towel and remove the section waste from the waste tray **(R)**.

Troubleshooting

The following table lists some errors and possible sources of error

Characteristics of the error	Possible origin
periodic waves, different thicknesses along	 damaged or blunt knife edge
the section	 improperly or loosely placed knife
	 elastic sample
	 insufficiently fixed sample or sample
	holder
	 sample is too soft
changing thicknesses along the section	 inhomogeneities (i.e. hard and soft
	phases) in the sectioning area
	 wrong trimming
strongly compressed section	 wrong knife angle
	 wrongly adjusted free angle (x-z-plane)
	 sample material is too soft

In case of a malfunctioning of the instrument, open a non-conformity in LAD and if necessary require a technical assistance by an external company and register the intervention in LAD.

Maintenance

A check of the instrument functions, lubricating of movable parts, a check of the driving system and a complete cleaning should be performed by an authorised service technician when needed.

Safety

Blades for microtomes are extremely sharp and need to be handled with care to prevent any kind of injury. Please respect the following rules to prevent any injury of yourself or other persons in the laboratory when using the rotary microtome:

- Before installing the blade holder, **FIRST** install the proper sample holder and insert your sample.
- During use, **ALWAYS** remove the blade holder **BEFORE** changing the sample holder or the sample.
- **AFTER** having finished your work, remove the blade holder and put it back into the plastic box for storage.

References

[1] Microtome User Manual (SLEE medical GmbH (2014). Operating Instructions – CUT 4062 / CUT 5062 / CUT 6062)

[2] Charles W. Scouten, Ph.D., Leica Microsystems (2011). Tips & Tricks in Sample Preparation. Knife Angle in Microtomy. Retrieved January 19, 2015 from

http://www.leica-microsystems.com/uploads/media/Knife_Angle_in_Microtomy.pdf [3] Michler GH (2008). Electron microscopy of polymers. Berlin/Heidelberg: Springer-Verlag, p. 213

[4] Sawyer LC, Grubb DT, Meyers GF (2008). Polymer microscopy. 3rd edition. Springer

Annex 2: Example of protocol for microscopy of microtome crosssections

The protocol shown is for polarised light microscopy and digital imaging

Note: the example given is the one used for JRC FCM activities. It is intended as an illustrative example only and in no way constitutes a recommendation nor any commercial endorsement.

Scope and field of application

This procedure describes how to analyse microtome cross-sections of multilayer plastic laminates in plane and crossed polarised light using transmitted polarised light microscopy (incident light microscope Zeiss Axioskop 2 MAT available in the "PRODUCT SAFETY & INNOVATION" group of the CAT Unit, Bld. 26, Lab 023), how to perform digital imaging and how to determine the thickness of individual layers. Strict respect of this SOP is required to all operators within FIT-EURL laboratories.

Equipment

Incident light microscope

- incident light microscope: Zeiss Axioskop 2 MAT (SN: 005 007 249), equipped with Moticam 10 (10.0 MP)
- personal computer: Dell Optiplex 740MT
- software: Motic Images Plus 2.0

Other laboratory equipment

- microscope slide with calibration and scale cross for calibration

Microscopy

Set the microscope for transmitted-light brightfield according to KÖHLER. Refer to the instrument manual (0 section 4.3.6 (3) p. 89-90).

Calibration side 0.1.5mm 00.6mm 0.1.5mm 0.0.07mm • • • 1 DIV-0.01mm Motic Switch on the microscope.

Place a high-contrast specimen on the specimen holder (e.g. the calibration slide \rightarrow circle with 0.15 mm diameter).

NOTE: The calibration slide can be found in one of the drawers labelled as "Moticam accessories".

Switch the turret disk of the condenser to position "H" for brightfield.

Swing in the 10x object lens and adjust the focus so that the object is clearly visible.

Close the luminous-field diaphragm until its border becomes visible (even if not in focus) in the field of view.

Use drive to lower the condenser until the edge of the luminous-field diaphragm is in focus.

Use both centering screws of the universal condenser to centre the luminous-field diaphragm and then open the diaphragm until its edge just disappears from the field of view.

To set the aperture diaphragm (contrast), remove one eyepiece from the tube (it can be pulled out) and look into the tube with your naked eye.

Calibration of the digital camera

the tube (it can be pulled out) and look into the tube with your naked eye.

Use the sliding knob to set the aperture diaphragm to approx. 2/3 or 4/5 of the diameter of the objective exit pupils as described in the instrument manual 0. Insert the eyepiece in the tube again when ready.

Switch on the computer.

Take the microscope slide with calibration circles and scale cross and place it on the specimen holder.

NOTE: The calibration slide can be found in one of the drawers labelled as "Moticam accessories".

Select the object lens that needs to be calibrated and adjust the microscope focus to view the appropriate calibration circle or the scale cross (see Table 10).

NOTE: The calibration circles are more suitable if round shaped items need to be measured. If cross-sections of multilayer plastic films shall be analysed, it is advised to perform the calibration using the scale cross.

Object lens	Calibration circle or scale cross
10x/0.25 Ph1	scale cross 0.01 mm OR circle Ø 0.15 mm (150 µm)
20x/0.45 Ph2	scale cross 0.01 mm OR circle Ø 0.15 mm (150 μ m) or 0.07 mm (70 μ m)
40x/0.65 Ph2	scale cross 0.01 mm OR circle Ø 0.07 mm (70 μm)

📕 Motic Images Plus 2.0 ML								
File Edit Image Measur	re Option Help							
🗋 New	😂 🐰 🥔 🗶 - 🛐 📧 🌗 - 🐜 🥥 - 🕅							
🚰 Open 🛛 Ctrl-								
Save Ctri	1+5							
Save As								
🕬 Capture Window 🦳 Ctrl-	H-M							
🔡 Image Comparison								
😹 Album								
🖨 Motic Report								
🔼 Setting								
Exit								

Open the software "Motic Images Plus 2.0".

Go to menu "File" and select "Capture Window".

A new window ("Motic Live Imaging Module") will open.

Pull out the metal bar in the upper part of the microscope. Now the live picture of the camera (Moticam 10) can be seen on the screen (in the "Motic Live Imaging Module" window).

Readjust the focus again if necessary and adjust the position of the microscope slide to see the entire calibration circle or the origin of the scale cross. The calibration circle or the origin of the scale cross, respectively, should be in the centre of the picture. To properly align the scale cross, it may be necessary to slightly turn the camera.

 Capture

 Format
 3664x2748

 Capture

 AutoCapture

 Trigger Capture

 Record

 Stop

 Timestamp

If necessary, change the settings for the contrast and sharpness.

NOTE: For calibrations using a calibration circle, a sufficient contrast between the circle and the background is needed. Otherwise the automatic calibration cannot be carried out. The settings shown here in the print screens should be sufficient. In addition, the power of the light source on the microscope should be no higher than "5".

Then go to the tab "Video Capture" (see camera symbol) and click "Capture" to take a snap shot of the current camera view.

Each snap shot is saved automatically and can be seen on the right in the window "Motic Images Plus 2.0 ML". The files are all named as "Capture_xx.sfc" with numbers in chronological order. They can be found in the folder C:\Motic\Motic Images Plus 2.0\Capture Folder.

NOTE: Do not change the position of the camera after having taken the snap shot for calibration. Otherwise a new snap shot should be taken to carry out the calibration.

Calibration with calibration circle

Go to window "Motic Images Plus 2.0 ML". Open the menu "Measure". Select "Calibration Wizard".

The window "Calibration Wizard" will open. Go to tab "Calibrate with calibration circle" and click the button "Load Image".

A dialog box opens. Select the snap shot file of the calibration circle that you want to use for calibration and click "Open".

NOTE: All snap shots taken before can be found in the folder C:\Motic\Motic Images Plus 2.0\Capture Folder.

Enter the diameter $[\mu m]$ of the selected calibration circle and specify the object lens (e.g. 10x, 20x or 40x) with which the snap shot was taken. Then click the button "Calibration" and the calibration is done automatically.

A new window "Save Sign" will open. Select a "Sign Name" from the column on the left (e.g. "40X (object lens)") or define a new one. Then click the button "Save".

The calibration is finished now and you can close the "Calibration Wizard" window by clicking the button "Close".

Calibration with scale cross

Gapture_15.4fc Gapture_16.4fc Gapture_10.4fc Gapture_10.4fc Gapture_20.4fc Gapture_20.4fc Gapture_21.4fc Gapture_22.4fc Gapture_22.4fc Gapture_23.4fc Gapture_25.4fc Gapture_25.4fc Gapture_25.4fc Gapture_25.4fc Capture J. sfc Desktop My D My Corr Capture 38 File name: • Open My Netwo Places All Image file: • Files of type Cancel 100 Height Calibration

Go to window "Motic Images Plus 2.0 ML". Open the menu "Measure". Select "Calibration Wizard".

The window "Calibration Wizard" will open. Go to tab "Calibrate with scale cross" and click the button "Load Image".

A dialog box opens. Select the snap shot file of the scale cross that you want to use for calibration and click "Open".

NOTE: All snap shots taken before can be found in the folder C:\Motic\Motic Images Plus 2.0\Capture Folder.

The selected photo will be opened in the "Calibration Wizard" window. Use the scroll bars on the right and on the bottom to move to the centre of the photo. There you will find a white circle with two red dots and a dialog box that shows the current dimension of the white circle.

The circle must be positioned in the very centre (origin) of the scale cross. If necessary, reposition it. To do so, move the cursor above the white circle. The cursor will transform into a cross. Now click on the circle with the left mouse button and drag and drop it.

Move the cursor to the upper red dot **(B)**. The cursor will transform into a hand. Now click on the red dot **(B)**, drag it along the y-axis of the scale cross and drop it exactly at a certain scale division/bar (e.g. 5 bars = 0.05 mm = 50μ m away from the origin). The circle will deform into an ellipse.

Then move the cursor to the right red dot **(A)**. Again the cursor will transform into a hand. Click on the red dot **(A)**, drag it along the x-axis of the scale cross and drop it exactly at a certain scale division/bar. Use the same distance as before at the y-axis (e.g. 5 bars = $0.05 \text{ mm} = 50 \text{ }\mu\text{m}$ away from the origin).

If you positioned each of the red dots **(A, B)** with the same distance to the origin of the scale cross, the pixel number for the x- and y-dimension ("Major/Minor half axis") of the circle must be the same. If not, readjust the positions of the red dots. Sometimes it can be necessary to reposition/recentre the entire circle.

Specify the object lens (e.g. 10x, 20x or 40x) with which the snap shot was taken and enter the x,y-dimensions of the circle. "Width" and "Height" refer

alibration Wizard

Calibrate with Calibration Circle Calibrate with Scale Cross Calibrate with Scale Line

to the distance \overline{OA} and \overline{OB} , respectively, with "O" being the origin of the circle. In the present example, the dots were positioned 5 bars (50 µm) away from the origin **(O)**. "Width" (\overline{OA}) and "Height" (\overline{OB}) of the circle are then 50 µm each. Then click the button "Calibration".

A new window "Save Sign" will open. Select a "Sign Name" from the column on the left (e.g. "40X (object lens)") or define a new one. Then click the button "Save".

The calibration is finished now and you can close the "Calibration Wizard" window by clicking the button "Close".

Set the microscope for transmitted-light polarisation

Refer to the instrument manual (0 section 4.3.9.1 (3) p. 96).

Take the microscope slide with the microtome section of the sample and place it on the specimen holder.

Sign Name

Objective

 First, please load an image you'll see a circle appear on the center of the circle (set

40X (obje

40

Calibrate with Calibration Circle Calibrate with Scale Cross Calibrate with Scale Line

Adjust the focus so that the sample is clearly visible. For sufficient magnification use the 40x object lens.

To view the object in plane polarised light, swing the polariser in the beam path.

sample in crossed polarised light:

To view the object in crossed polarised light, swing in the analyser module (filter No. 2 "Epi Pol") on the reflector turret in addition.

The field of view will appear dark now because the polarisers are crossed. Only birefringent (i.e. anisotropic) objects (e.g. polymer films where polymer chains have an orientation, e.g. due to shear stress in the die or due to stretching during extrusion) will display a colour now (white or brightly coloured) (see 0, 0).

NOTE: Anisotropic materials may also remain dark between crossed polars if the sample is oriented so that it is being

sample in plane-polarised light:

viewed down an optic axis and therefore appears isotropic or the sample is in one of 4 possible extinction positions (see 0). If this happens, microscopy should be carried out in plane-polarised light. It is not possible to make the specimen visible by rotating the specimen itself or by changing the direction of the polarised by rotating the polariser because the microscope is equipped with a non-rotatable mechanical stage and a non-rotatable polariser/analyser.

sample in crossed polarised light:

sample in plane-polarised light:

Carefully "scan" the entire microtome section from head to tail. It may happen that certain parts are damaged and one or more of the sample layers can be delaminated. Try to find an intact part of the section to continue. Otherwise you have to prepare a new section.

Take a digital image of the sample

Pull out the metal bar in the upper part of the microscope. Now the live picture of the camera (Moticam 10) can be seen on the screen (in the "Motic Live Imaging Module" window).

sample in crossed polarised light:

sample in plane-polarised light:

Readjust the focus again if necessary and adjust the position of the microscope slide to see all the layers of the sample in the live picture on the screen. Go to the tab "Video Capture" (see camera symbol) and click "Capture" to take a snap shot of the current camera view.

Each snap shot is saved automatically and can be seen on the right in the window "Motic Images Plus 2.0 ML". The files are all named as "Capture_xx.sfc" with numbers in chronological order. They can be found in the folder C:\Motic\Motic Images Plus 2.0\Capture Folder.

Measure the sample dimensions in the digital image

A new window will open. Select a file and click the button "Open" to open it.

Select the correct object lens that was used to take the image. Open the tab "Measure" on the lower left of the window and select an object lens from the drop-down menu.

NOTE: The object lens must have been calibrated before as described in section 0. Select the object lens name from the list that was used in the calibration (here "40X (object lens)").

To measure the thickness of the layers in the picture, open the menu "Measure" on the upper left of the window and select "Line" from the drop-down menu.

You can draw a line now. To do so, click and hold the left mouse button while dragging the line. The length of the line will be shown immediately in a small text box.

NOTE: If necessary, move the scroll bars on the right and the bottom to select the area of the image where you want to carry out the measurements.

Start and end point of the line can be readjusted. Simply click on the start or end point with the left mouse button and drag and drop the point. Like this you can also elongate a line if the measurement area is bigger than the actual area shown on the screen.

Also the entire line as well as the text box can be moved via drag and drop with the left mouse button.

The measurement should be carried out perpendicular to the layers.

If you want to add more lines, just click and hold the left mouse button and draw the line as described before. There is no need to activate the "Line" function again in the "Measure" menu.

sure Table

Measure												
Measure Table Optic												
	Length	Width	Height	Area	Perimeter	Radius	Major half a>	Minor half ax	Angle	Arc	x	Y
L1	94.4 µm											
L2	2.4 µm											
L3	16.1 µm											
L4	1.7 µm											
L5	7.1 µm											
L6	2.0 µm											
L7	11.3 µm											
I ✓ Export Links (*.xls) Export												

 Nessure
 Prevent

 Common Lune
 Fork

 Common Lune
 Fork

 Poets &
 Image: Color in the state of the state of

A table that lists the dimensions of all lines drawn can be accessed via the button "Measure Table" in the lower left corner of the screen, tab "Measure".

A new window ("Measure") opens. The tab "Measure Tables" shows the length of each drawn line.

In the tab "Options" the line style and the format of the text boxes can be changed.

When you are finished, save the file. To do so, open the drop-down menu "File" in the upper left corner of the screen and select "Save As".

Save Image					? 🗙
Save in:	Capture Folder		•	- 🗈 💣 🎟	•
My Recent Documents Desktop My Documents My Computer	LC02 2014 Capture 2.sfc Capture 3.sfc Capture 3.sfc Capture 5.sfc Capture 5.sfc Capture 5.sfc Capture 5.sfc Capture 5.sfc Capture 9.sfc Capture 9.sfc Capture 9.sfc Capture 11.sfc Capture 12.sfc Capture 12.sfc Capture 12.sfc Capture 12.sfc Capture 12.sfc	Capture _15.sfc Capture _16.sfc Capture _10.sfc Capture _10.sfc Capture _10.sfc Capture _20.sfc Capture _21.sfc Capture _23.sfc Capture _23.sfc Capture _25.sfc Capture _25.sfc	Capture 31 Capture 31 Capture 33 Capture 33 Capture 33 Capture 34 Capture 34 Capture 35 Capture 33 Capture 33).sfc .sfc 3.sfc 5.sfc 5.sfc 5.sfc 5.sfc 3.sfc 3.sfc	
My Network Places	File name:	Capture_38_ML2 (40	0× magnified) di	m measured	Save
	Save as type:	SFC image files (*.sfc)		-	Cancel

A new window ("Save Image") will open. It is advised to save the file as a "sfc"-project which can be reworked if necessary. If you want to export it, save it also as a "tif"-file which provides a sufficient resolution for publication in reports or scientific journals. Never overwrite the original file "Capture_xx.sfc". Always select a new file name. You can also create a new folder for your project and save the files in the project folder.

Reference documents

- [1] Carl Zeiss Light Microscopy (2002). Operating Manual. Axioskop 2 MAT/2 MAT mot. Incident Light Microscope. B 46-0012 e 10/02
- [2] Zhang XM, Elkoun S, Ajji A, Huneault MA (2004). Oriented structure and anisotropy properties of polymer blown films: HDPE, LLDPE and LDPE. Polymer 45: 217-229
- [3] Sawyer LC, Grubb DT, Meyers GF (2008). Polymer microscopy. 3rd edition. Springer

Annex 3: Example of protocol for handling/maintenance of an ATR-FTIR spectrometer

Note: the example given is the one used for JRC FCM activities. It is intended as an illustrative example only and in no way constitutes a recommendation nor any commercial endorsement.

Scope and field of application

This procedure describes how to perform ATR-FTIR spectroscopy to characterise liquid or solid substances (e.g. polymer films).

Terms and definitions

ATR attenuated total reflection -- FTIR Fourier Transform Infrared

Materials and reagents

- organic solvent (e.g. acetone) to clean the ATR diamond crystal
- paper towels

Equipment

ATR-FTIR system

- Perkin Elmer Spectrum One FT-IR Spectrometer equipped with Perkin Elmer Universal ATR Sampling Accessory
- personal computer: Dell Optiplex GX270 software: Spectrum Version 6.3.1, Perkin Elmer

Other laboratory equipment

- tweezers
- Pasteur pipettes
- glass beaker (25-50 mL)
- spatula

ATR-FTIR Spectroscopy

Start up

- Switch on the computer and monitor. The ATR-FTIR spectrometer should be already turned on as it is kept ON at any time.
- Open the software "Spectrum" (Version 6.3.1) and log in
- Check the intensity of the laser beam as described in the user's guide for the "Spectrum" software. If the criteria are not met, refer to the troubleshooting section of the instrument manual 0.
- Confirm that the ATR crystal is clean and collect a background spectrum for air without any sample. To do so, proceed as indicated in the "Spectrum" software user's guide 0.

Collecting sample spectra

- Collect sample spectra according to the "Spectrum" software user's guide 0.
- Avoid any scratching of the ATR crystal when installing a test specimen. Lift the plunger well up before moving it to avoid scratching the ATR crystal and the surrounding metal plate. When installing the specimen, never fasten the plunger too tight. Otherwise the ATR crystal may break.

Data processing

- Perform data processing, such as baseline correction, smoothing, subtraction or labelling of spectra, as needed. Refer to the "Spectrum" software user's guide and proceed as indicated in there 0.
- Files of all recorded spectra are saved automatically in the folder C:\pel_data\spectra. You can create an additional folder for your project and move all files there. Indicate the data path in the instrument table (Annex 1). Save also your processed files if wanted under this data path.

Shut down

- Fill in the instrument table
- Shut down the computer and switch off the monitor.
- DO NOT SWITCH OFF THE ATR-FTIR SPECTROMETER. The instrument should remain ON at all times. This keeps it stable and prevents excessive accumulation of water which might damage the beam splitter.

Troubleshooting

For troubleshooting refer to the instrument manual 0 or the software user's guide 0.

Cleaning and maintenance

- Clean the ATR crystal and the plunger with a paper towel soaked in an organic solvent (e.g. acetone) after use. **DO NOT SCRATCH THE CRYSTAL SURFACE!**
- In case of errors, problems or general maintenance consult the instrument manual 0.
- The desiccant inside the instrument has to be removed and dried once every year. To do so, proceed as indicated in the instrument manual 0.
- For extraordinary maintenance, contact an authorised service technician.
- Register all errors, problems and maintenance activities in the instrument table

Safety

The instrument contains a low power, visible (red) laser. Do not stare into the laser beam to prevent damage of your eye.

Reference document

[1] Perkin Elmer. Spectrum One. Instrument Manual

[2] Perkin Elmer. IR Spectroscopy Software User's Guide

Europe Direct is a service to help you find answers to your questions about the European Union Free phone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu

Our publications are available from EU Bookshop (<u>http://bookshop.europa.eu</u>), where you can place an order with the sales agent of your choice.

The Publications Office has a worldwide network of sales agents. You can obtain their contact details by sending a fax to (352) 29 29-42758.

JRC Mission

As the Commission's in-house science service, the Joint Research Centre's mission is to provide EU policies with independent, evidence-based scientific and technical support throughout the whole policy cycle.

Working in close cooperation with policy Directorates-General, the JRC addresses key societal challenges while stimulating innovation through developing new methods, tools and standards, and sharing its know-how with the Member States, the scientific community and international partners.

Serving society Stimulating innovation Supporting legislation

doi:10.2788/10593 ISBN 978-92-79-57561-7